Koen Draijer

Koen Draijer

PhD candidate

Working with: Nong Artrith

Employed since: February 2023
Email: k.m.draijer@uu.nl
Room: DDW 4th floor open area

Screening low-cost catalyst materials for seawater splitting

Water splitting electrolysis can contribute to a fossil-free energy society by using renewable energy for green hydrogen production[1–3]. Specifically, polymer electrolyte membrane electrolysers are promising technologies that improve on state-of-the-art liquid electrolyte systems with increased current density, pressure, and range in nominal power density[4,5]. A drawback of all electrolysers is their reliance on splitting of demineralized water over expensive Pt and Ir electrodes, which hinders their economic feasibility as fossil-fuel-free hydrogen production technology[4,6–8]. Therefore, electrolysers which can split seawater over inexpensive, earth-abundant catalysts are necessary to improve the economic feasibility of green hydrogen production[9,10].

My research is aimed at screening low-cost catalyst materials for seawater splitting using computational methods like density functional theory (DFT), molecular dynamics (MD), and micro-kinetic modeling (MKM). The structural, electronic, and energetic data of catalyst materials will then be used to develop a database[11,12]. To accelerate materials discovery, machine learning methods can be trained on the developed database to predict reactivity of novel catalyst materials. Machine learning has the distinct advantage of learning from existing computational and experimental data to produce new data with reduced computational cost. Moreover, machine learning algorithms can find non-linear relations between catalyst structure and reactivity where human chemical intuition might not[13–16]. The obtained model will be based on the atomic energy network (ænet)[https://github.com/atomisticnet/] package.


[1]       A. Ursúa, L. M. Gandía, P. Sanchis, Proceedings of the IEEE 2012, 100, 410–426.

[2]       F. Ueckerdt, C. Bauer, A. Dirnaichner, J. Everall, R. Sacchi, G. Luderer, Nature Climate Change 2021 11:5 2021, 11, 384–393.

[3]       J. R. Rostrup-Nielsen, J. Sehested, J. K. Nørskov, Advances in Catalysis 2002, 47, 65–139.

[4]       M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int J Hydrogen Energy 2013, 38, 4901–4934.

[5]       W. Li, H. Tian, L. Ma, Y. Wang, X. Liu, X. Gao, Cite this: Mater. Adv 2022, 3, 5598.

[6]       C. Li, J. B. Baek, ACS Omega 2020, 5, 31–40.

[7]       H. O. Lee, J. Yesuraj, K. Kim, Appl Energy 2022, 314, DOI 10.1016/J.APENERGY.2022.118928.

[8]       P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. Aukauloo, C. Etiévant, Int J Hydrogen Energy 2011, 36, 4134–4142.

[9]       J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao, K. Du, M. Jaroniec, S.-Z. Qiao, T. Ling, Nature Energy 2023 2023, 1–9.

[10]     Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, S.-Z. Qiao, Y. Q. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, S. Qiao, Adv Energy Mater 2018, 8, 1801926.

[11]     N. Artrith, Journal of Physics: Energy 2019, 1, 32002.

[12]     A. M. Miksch, T. Morawietz, J. Kästner, A. Urban, N. Artrith, Mach Learn Sci Technol 2021, 2, 031001.

[13]     G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, A. Fazzio, Journal of Physics: Materials 2019, 2, 32001.

[14]     N. Artrith, Matter 2020, 3, 985–986.

[15]     N. Artrith, Z. Lin, J. G. Chen, ACS Catal 2020, 10, 9438–9444.

[16]     S. R. Denny, Z. Lin, W. N. Porter, N. Artrith, J. G. Chen, Appl Catal B 2022, 312, 121380.


February 2023 – present

PhD candidate at the Materials Chemistry and Catalysis, Utrecht University, the Netherlands.
Supervised by: dr. Nong Artrith.

May 2022 – December 2022

Research and development intern at Bio Base Europe Pilot Plant in Ghent, Belgium.
Supervised by: ir. Pieter De Brabander and dr. ir. Evelien Uitterhaegen.


September 2019 – December 2022

MSc Biotechnology – Process Technology, Wageningen University, the Netherlands.
MSc Thesis: Computational characterization and purification of Marchantia polymorpha ARF2. Supervised by: Mariska Twaalfhoven and dr. ir. Carlo van Mierlo

MSc Biotechnology – Environmental and biobased biotechnology, Wageningen University, the Netherlands.
MSc Thesis: DFT study of butyric acid hydrodeoxygenation on W2C (101) surface.
Supervised by: Marlene Führer, Raghavendra Meena, and dr. Guanna Li.

September 2016 – July 2019

BSc Biotechnology, Wageningen University, the Netherlands.
BSc Thesis: Influence of synthesis on carbon supported Mo-W carbide catalysts for the hydrodeoxygenation of stearic acid.
Supervised by: Marlene Führer.

%d bloggers liken dit: