Johan de Boed

Johan de Boed

PhD Candidate
Employed since: November 2017
Supervisors: Baira Donoeva & Petra de Jongh

Phone: +31622736361
Room: 4th floor study area

Research: Support Effects in Gold-Catalyzed Direct Propylene Epoxidation

Currently, in research the most promising waste-free propylene oxide synthesis involves selective gas-phase oxidation of propylene with oxygen in the presence of hydrogen and supported gold nanoparticles on Ti-containing supports as a catalyst. Where propylene oxide can be obtained with high selectivity with water as a by-product. [1] In this bifunctional system, metallic gold particles are proposed to be crucial for activation of oxygen and hydrogen to peroxides. While the selective oxidation of propylene is proposed to take place at the perimeter between the Au-particles and the metal oxide surface (figure 1). Ti activates H2O2 for the subsequent reaction with propylene. [2] Yet limited information is available on the effects of the support materials in the selective oxidation of propylene to propylene oxide. In my research I want to gain more insight into how certain support-related parameters affect the catalytic performance of this catalyst.

In our group there is experience both with supported gold-nanoparticles (2-4 nm) on oxidic supports, used in selective butadiene hydrogenation [3], and selective oxidations, e.g. the selective oxidation of ethylene over supported silver-catalysts. [4]

[1] For example Haruta et al., J. Catal., 1998, 178, 566
[2] S.T. Oyama et al., J. Phys. Chem. C, 2008, 112, 1115
[3] P.E. de Jongh et al., ACS Catal. 2017, 7, 5594
[4] P.E. de Jongh et al., J. Catal., 2017, 356, 65



2017 – present
PhD Candidate in the group of Prof. Dr. P.E. de Jongh and Dr. B. Donoeva at Materials Chemistry and Catalysis

MSc Chemistry: Molecular Sciences at VU University/University of Amsterdam (joint degree)
Master thesis: “Donor-Functionalized Phosphinines: On the Synthesis and Coordination Chemistry of Bis-Hydroxy and Bis-Methoxy-Functionalized Phosphinines” in the group of Prof. Dr. C. Muller, Freie Universitat Berlin, Berlin, Germany
Literature study: “Terpyridines in Photocatalysis: Potential Applications of Terpyridyl-Based Systems in Photoredox Catalysis for Artificial Photosynthesis”

Bachelor Chemie, Hogeschool Leiden
Bachelor thesis: “Kinetic studies on the dehydrogenation of amine-boranes by a pre-organized Frustrated Lewis Pair” in the group of Dr. J.C. Slootweg at VU University Amsterdam, Amsterdam

Born in Dirksland, the Netherlands

%d bloggers liken dit: